

BK BIRLA CENTRE FOR EDUCATION

SARALA BIRLA GROUP OF SCHOOLS SENIOR SECONDARY CO-ED DAY CUM BOYS' RESIDENTIAL SCHOOL

POST MID TERM EXAMINATION (2025)

MARKING SCHEME

Class Date	: IX : 07-01-2025			Duration: 1 Hr Max. Marks: 25
I.	Multiple choice questions. 1 mark for each question.			
1.	110 °	[D]		
2.	85	[C]		
3.	8	[A]		
4.	50 ⁰	[C]		
5.	Triangle	[C]		
6.	Mean = 2 + 4 + 6 + 8 + 10 + 12 + 14 + 1	.6	1	
	$=\frac{72}{8}$		1/2	
	8 = 9		1/2	
7.	Let ABCD is a parallelogram such th	nat AC = BD.	/-	
		C B		
	In $\triangle ABC$ and $\triangle DCB$,			
	AC = DB [Given]		1/2	
	AB = DC [Opposite sides of a pa	arallelogram]		
	BC = CB [Common]		1/2	
	$\therefore \Delta ABC \cong \Delta DCB$ [By SSS congruency]			
	$\Rightarrow \angle ABC = \angle DCB [By C.P.C.T.]$		1/2	
	ABC + ∠DCB = 180° (2) [Co-interior	angles]		
	$\angle ABC = \angle DCB = 90^{\circ}$		1/2	
	ABCD is a parallelogram having an an	gle equal to 90°.		
8.	Theorem Prove that the diagonal .	triangles D		c

AC = AC common	1/2			
$\Delta ABC \cong \Delta CDA$ ASA rule	1∕₂			
9. In $\triangle APB$ and $\triangle CQD$,				
$\angle APB = \angle CQD$ [Each 90°]	1/2			
AB = CD [:: Opposite sides of a parallelogram]	1/2			
$\angle ABP = \angle CDQ$ Alternate angles	1/2			
$\triangle APB \cong \triangle CQD$ By AAS congruency	1/2			
AP = CQ [By C.P.C.T.]	1			
10. For adequate labelling and using scale				
For correct construction of Histogram 2				
11. For adequate labelling and using scale				
For correct construction of Histogram	2			
12. D is a mid point of AC DM II BC				
M is mid point of AB	1/2			
ii) $\angle ADM = \angle ACB$ corresponding angles $\frac{1}{2}$ $\angle ADM = 90^{0}$				
MD perpendicular AC	1/2			
iii) . In ΔADM and ΔCDM				
AD = DC D is mid point				
DM = DM common	1/2			
$\angle ADM = \angle CDM$ Each 90 ⁰	1/2			
$\triangle ADM \cong \triangle CDM$ SAS rule				
AM = CM CPCT	1/2			
$CM = \frac{1}{2}AB$	1/2			
13. P and Q are mid points of AB and BC				
PQ II AC and PQ = $\frac{1}{2}$ AC (i) mid point theorem	า			
S and R mid points of AD and DC				
SR II AC and SR = $\frac{1}{2}$ AC ii)				
2				
From i and ii				

FIUITIANUI	
PQ II SR and PQ = SR	1/2
∴ PQRS is a parallelogram	, same pair parallel and equal.

1/2 1/2 1/2 1/2
